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Abstract

As is well known, classical continuum theories cease to adequately model a material�s behavior as long-range loads
or interactions begin to have a greater effect on the overall behavior of the material, i.e., as the material no longer con-
forms to the locality requirements of classical continuum theories. It is suggested that certain structures to be analyzed
in this work, e.g., columnar thin films, are influenced by non-local phenomena. Directed continuum theories, which are
often used to capture non-local behavior in the context of a continuum theory, will therefore be used. The analysis in
this work begins by establishing the kinematics relationships for a discrete model based on the physical structure of a
columnar thin film. The strain energy density of the system is calculated and used to formulate a directed continuum
theory, in particular a micromorphic theory, involving deformations of the film substrate and deformations of the
columnar structure. The resulting boundary value problem is solved analytically to obtain the deformation of the film
in response to applied end displacements.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The goal of this work is to develop accurate models of micro- and nano-scale thin film systems possess-
ing a certain structure. This structure may be heterogeneous (for example, a material with voids, inclusions,
or pores) and/or it may not sufficiently conform to the locality requirements of classical continuum
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mechanics. For example, the state of a body at a given point may be influenced by what happens at some
distance away due to long-range interaction forces. For simplicity, we begin by constructing a discrete
model of the physical system we are interested in—this discrete model incorporates the heterogeneous
and non-local nature of certain micro- and nano-scale systems by adding additional elements (linear and
torsional springs) to a classical Euler–Bernoulli beam model. After formulating a continuous version of
the discrete model, one obtains a so-called directed continuum theory. The directed continuum class of
theories encompasses a variety of related continuum theories, including Cosserat, micropolar, micromor-
phic, and couple-stress theories (Eringen, 1968, 1966; Capriz and Podio-Guidugli, 1976; Mindlin, 1964;
Koiter, 1964; Toupin, 1964; Askar and Cakmak, 1968).

Before describing directed continuum theories, it is useful to consider the classical continuum theory
(Truesdell and Noll, 2003). In classical continuum mechanics, a body B is a space that possesses a measure,
the mass distribution, and consists of particles that are mapped into Euclidean space E. The particular map-
ping, called a placement, establishes the volume, configuration, and mass density of the body in physical
space. As the body evolves, the placement of B into E necessarily changes. In directed continuum theories
there is an additional placement of B. This second placement, which occurs simultaneously with the clas-
sical placement, maps the body into another finite dimensional, smooth manifold. The points of the man-
ifold represent a structure in addition to the structure of the body in the classical continuum sense. This
additional structure is often called a microstructure or microvolume, although the prefix micro is not nec-
essarily a reference to size. The deformable microstructure is represented by a vector field with the vectors
typically called directors, hence the name directed continuum. It is often the case that in developing a specific
directed continuum theory one relies on a discrete model that possesses easily identifiable microstructural
features. The time evolution of these features are captured by the selected director fields.

With this in mind, Section 2 begins by proposing a discrete model of a thin film based on observing the
physical structure of a columnar thin film. The discrete model will be used to obtain a discrete form of the
strain energy and to obtain Lagrange�s equations. In Section 3, the continuous set of governing equations
consistent with a directed continuum theory is formulated based on the discrete equations found in Section
2. (The additional microstructure of the directed continuum consists of a vector field that describes the
effect of the interacting columns in the discrete model.) The strain energy density is then calculated and used
with Hamilton�s principle to obtain the required boundary conditions for the boundary value problem
(BVP). Section 4 briefly describes the steps used to obtain an analytical solution to the problem. Finally,
Section 5 includes some sample problems that highlight the usefulness of the directed continuum formula-
tion of the thin film problem.
2. Discrete model formulation

2.1. Defining the discrete model

Before proceeding with the formulation of a continuum model, the approach described in this work
begins by defining a discrete mechanical system along with its governing equations. A similar approach
has been used in the structural analysis of buildings (Bažant, 1971, 1972) and, more recently, in the analysis
of lattice dynamics (Suiker et al., 2001). The process of generating a discrete model begins by observing the
physical structure of a columnar thin film. For some time, experimentalists have been fabricating such films
consisting of a substrate, or bulk material foundation, and an observable structure, or columns, on the sur-
face of the substrate on the scale of tens of nanometers (Robbie et al., 1999). The columns are attached to
the substrate on one end and may interact with neighboring columns through long-range forces. Based on
this description of a columnar thin film, a discrete model has been constructed from a variety of compo-
nents: a substrate, inextensible rods that model the columns, and springs that model the interaction between



Fig. 1. The discrete model of a portion of a thin film with four spring pairs between each inextensible rod (n = 4) centered at the ith
node. The spring pairs, separated by h/4 in the case shown here, are assumed to be acting at the point where they are attached to each
rod (they are drawn in a schematic form in this figure). The choice of four spring pairs is simply shown as an example. In Section 3.1,
the model will be formulated to account for an infinite number of springs.
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the model�s components. Fig. 1 shows a particular configuration of a central portion (excluding the bound-
aries) of such a discrete model.

The model shown in Fig. 1 is similar to a classical beam model in that it is defined over one dimension
(horizontal in the figure) and is allowed to deform into two dimensions (horizontal and vertical). Before
proceeding with a discussion of the components of the discrete model, it is necessary to present the kine-
matics of the model, which have been shown in Fig. 2. At each node i, there will be four independent
displacement terms: ui, vi, /i, and bi. Note that bi is a relative rotation, since it is the rotation of the column
relative to the rotation (or slope) of the substrate. For bi = 0, the ith column is perpendicular to the sub-
strate. In the initial configuration, as shown in Fig. 1, ui = vi = 0 and /i = bi = 0.

Keeping in mind the earlier physical description of a columnar thin film, it is now possible to associate an
energy and deformation mechanisms with each of the components. First, in order to generate a linear sys-
tem of governing equations, pairs of linear springs (harmonic potentials) are used to model the interaction
between the columns. One spring accounts for the vertical displacement while another spring accounts for
the horizontal displacement. In the discrete case, there will be n such pairs of springs (in the figures shown
so far, n = 4). For the ith node, the contribution to the total strain energy due to these springs will be a
function of each of the four displacements at each of the nodes i � 1, i, and i + 1, i.e., there will be 12
Fig. 2. There are four displacements describing the deformation of the ith node from the initial position to the deformed position:
displacement in the horizontal direction, ui; displacement in the vertical direction, vi; rotation (or slope) of the substrate, /i; and
rotation of the column relative to the substrate rotation, bi.
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discrete displacement terms appearing in the energy equation. Since the spring constants associated with
vertical displacement are taken to be identical, they will be called k1. Similarly, the spring constants asso-
ciated with horizontal displacement will be called k2 (see Fig. 3). The corresponding strain energy terms will
be called U1 and U2, such that
Fig. 3.
rod (n
horizo
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where
kj �
j
n
; ð2:3Þ
and where we have used
sinðbi þ /iÞ � bi þ /i; cosðbi þ /iÞ � 1. ð2:4Þ

Equations (2.4) are required to ensure that the resulting set of governing equations will be linear. For this

reason, U1 is not a function of b or / terms. As an example, referring back to Fig. 1 where n = 4, Eqs. (2.1)
and (2.2) would each consist of the sum of four terms, with the springs attached at points h/4, h/2, 3h/4, and
h along the length of the column. For the directed continuum version of the model to be presented in Sec-
tion 3, n is considered to be infinite and the constants k1 and k2 will be scaled accordingly.

Next, the energy due to the torsional spring located at the ith node and described by spring constant k3 is
given by
ðU 3Þi �
1

2
k3b

2
i . ð2:5Þ
A unit cell, enclosed by a dashed box, from the discrete model of the thin film with four spring pairs between each inextensible
= 4). Note that there are n = 4 spring pairs consisting of n = 4 vertical springs (each with spring constant k1) and n = 4
ntal springs (each with spring constant k2). The torsional springs are given by k3 and the substrate is described by k4 and k5.
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As has already been mentioned, when bi equals zero, the column is perpendicular to the substrate. In this
case, there is no twisting of the torsional spring and no contribution from the torsional spring to the total
strain energy.

The final component of the discrete model to be considered is the substrate. Once again, to ensure lin-
earity of the governing equations, it is necessary to treat the longitudinal deformation of the substrate inde-
pendently from the bending of the substrate. The longitudinal deformation is modeled with a standard
linear spring with spring constant k4, such that, using previously established notation,
ðU 4Þi �
1

2
k4 ðuiþ1 � uiÞ2 þ ðui � ui�1Þ2
h i

. ð2:6Þ
The contribution to the strain energy due to bending will be a function of displacements vi�1, vi, vi+1,
/i�1, /i, and /i+1 and material constant k5, such that
ðU 5Þi �
1

2
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i Þ
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. ð2:7Þ
The k4 term of the energy function given in Eq. (2.6) is equivalent to an elastic bar subjected to tension or
compression when k4 is taken to equal EA/l, where EA is the equivalent stiffness of the rod. The k5 term of
the energy function given in Eq. (2.7) is equivalent to that for an Euler–Bernoulli beam when k5 equals 4EI/
l3, where EI is the bending stiffness of the beam. Although a beam is continuous, here it is treated in a dis-
crete form so that it may be combined with the other discrete components of the model.

To clarify the differences between the substrate described by Eqs. (2.6) and (2.7) and a classical Euler–
Bernoulli beam, it is worth noting that for an Euler–Bernoulli beam one assumes that the slope (given here
by the / terms) is equal to the first derivative of the displacement with respect to the horizontal position (in
this work it would be v 0). For an Euler–Bernoulli beam, one may think of / as a constrained generalized coor-
dinate and the relation / = v0 would be an additional constraint equation. With the addition of the spring ele-
ments k1, k2, and k3 to the substrate as shown inFig. 1, the resulting deformation/will not necessarily equal v 0.

Although the discrete model presented thus far was developed by considering the structure of columnar
thin films, it may be useful to think about the model for use with other micro- and nano-scale systems.
For example, the model exhibits non-local behavior, in a manner similar to Triantafyllidis and Bardenhagen
(1993), because of the presence of the interacting columns attached at discrete nodes along the continuous
substrate. The model may be thought of as a bilayer material, with the substrate as one layer and the inter-
acting columns as another layer. It is hoped that the non-local model presented in the present work may be
used to analyze other systems such as thin films with regular pores (Lew and Redwing, 2003), thin films with
nano-voids (Mitra et al., 2004), nano-scale composite materials (Irie et al., 1997), multi-layered thin films
(Wei et al., 2004), and micro-scale thin films in buckling (Volynskii et al., 2000, 2004,). Therefore, the model
as presented thus far should be thought of more generally than simply as a model of a columnar thin film.

2.2. Formulating the discrete form of the governing equations

The goal now is to formulate the discrete form of the governing equations, i.e., the Lagrange�s equations.
Referring to the unit cell from Fig. 3, the total energy U is
U ¼ U 0 þ
Xm�1

i¼1

1

2
ðU 1Þi þ

1

2
ðU 2Þi þ ðU 3Þi þ

1

2
ðU 4Þi þ

1

2
ðU 5Þi

� �
þ Um; ð2:8Þ
where U0 denotes the energy associated with the left-hand half-cell and Um denotes the energy of the right-
hand half-cell. The one-half multiples in Eq. (2.8) are present since the unit cell includes one-half of the k1,
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k2, k4, and k5 springs, as shown in Fig. 3. To write the discrete Lagrange�s equations requires taking
4(m + 1) derivatives, i.e., derivatives of the total energy U with respect to each of the displacements.

Since there are four displacements at i = 0 and at i = m, there are 4(m � 1) interior displacements. The
governing equations presented in this work are based on the interior elements, and not the two boundaries,
of the one-dimensional model. This is because the derivatives with respect to the displacements at i = 0 and
i = m are different in form from the derivatives with respect to the interior displacements (see Eq. (2.8)). The
4(m � 1) derivatives with respect to the interior displacements have the same form:
oU
oui

¼ oðU 2Þi
oui

þ oðU 4Þi
oui

¼ 0; i ¼ 1; 2; . . . ;m� 1; ð2:9Þ

oU
ovi

¼ oðU 1Þi
ovi

þ oðU 5Þi
ovi

¼ 0; i ¼ 1; 2; . . . ;m� 1; ð2:10Þ

oU
o/i

¼ oðU 2Þi
o/i

þ oðU 5Þi
o/i

¼ 0; i ¼ 1; 2; . . . ;m� 1; ð2:11Þ

oU
obi

¼ oðU 2Þi
obi

þ oðU 3Þi
obi

¼ 0; i ¼ 1; 2; . . . ;m� 1; ð2:12Þ
assuming that there are no external moments or forces applied, which is why the right-hand sides of Eqs.
(2.9)–(2.12) equal zero. (This assumption is introduced since the purpose here is to demonstrate the feasi-
bility of the model and not to analyze a particular case that may require such applied loads.) The results of
the derivatives from Eqs. (2.9)–(2.12) applied to the energy terms given by Eqs. (2.1), (2.2) and (2.5)–(2.7)
are
oU
oui

¼ k2
Xn

j¼1

2ui � ui�1 � uiþ1 þ kjhðbi�1 þ /i�1 � 2bi � 2/i þ biþ1 þ /iþ1Þ
� �

þ k4ð2ui � ui�1 � uiþ1Þ; ð2:13Þ
oU
ovi

¼ k1
Xn

j¼1

ð2vi � vi�1 � viþ1Þ þ
3

2
k5 4vi � 2vi�1 � 2viþ1 � lð/i�1 � /iþ1Þ
� �

; ð2:14Þ

oU
o/i

¼ k2
Xn

j¼1

kjhðui�1 � 2ui þ uiþ1Þ � ðkjhÞ2ðbiþ1 þ /iþ1 � 2bi � 2/i þ bi�1 þ /i�1Þ
h i

þ 1

2
k5l 3vi�1 � 3viþ1 þ lð4/i þ /i�1 þ /iþ1Þ

� �
; ð2:15Þ

oU
obi

¼ k2
Xn

j¼1

kjhðui�1 � 2ui þ uiþ1Þ � ðkjhÞ2ðbiþ1 þ /iþ1 � 2bi � 2/i þ bi�1 þ /i�1Þ
h i

þ k3bi; ð2:16Þ
where each of the derivatives equals zero according to Eqs. (2.9)–(2.12). After substituting kj from Eq. (2.3),
the summations appearing in Eqs. (2.13)–(2.16) are observed to be convergent series of the forms
Xn

j¼1

a ¼ na;
Xn

j¼1

ja ¼ a
2
nð1þ nÞ;

Xn

j¼1

j2a ¼ a
6
nð1þ 3nþ 2n2Þ; ð2:17Þ
for any constant a. After applying Eq. (2.17) to Eqs. (2.13)–(2.16), the final system of Lagrange�s equations
are
0 ¼ k2 nð2ui � ui�1 � uiþ1Þ þ
1þ n
2

� �
hðbi�1 þ /i�1 � 2bi � 2/i þ biþ1 þ /iþ1Þ

� �
þ k4ð2ui � ui�1 � uiþ1Þ;

ð2:18Þ
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0 ¼ k1nð2vi � vi�1 � viþ1Þ þ
3

2
k5 4vi � 2vi�1 � 2viþ1 � lð/i�1 � /iþ1Þ
� �

; ð2:19Þ

0¼ k2
1þ n
2

� �
hðui�1 � 2ui þ uiþ1Þ �

1þ 3nþ 2n2

6n

� �
h2ðbiþ1 þ/iþ1 � 2bi � 2/i þ bi�1 þ/i�1Þ

� �

þ 1

2
k5l 3vi�1 � 3viþ1 þ lð4/i þ/i�1 þ/iþ1Þ

� �
; ð2:20Þ

0 ¼ k2
1þ n
2

� �
hðui�1 � 2ui þ uiþ1Þ �

1þ 3nþ 2n2

6n

� �
h2ðbiþ1 þ/iþ1 � 2bi � 2/i þ bi�1 þ/i�1Þ

� �
þ k3bi.

ð2:21Þ
3. Continuum model formulation

The goal of this section is to obtain the governing equations for a continuous system based on the dis-
crete model with microstructural elements presented in Section 2. Ultimately, this goal will be accomplished
by using Hamilton�s principle, an energy minimization method, which requires a strain energy density func-
tion for the system. The advantage of this approach is that one obtains the complete BVP, i.e., both the
governing equations in terms of continuous displacement functions u(x), v(x), /(x), and b(x) and the nec-
essary boundary conditions. To obtain a strain energy density W for the desired continuous system based
on the discrete system requires three steps:

(1) the discrete Lagrange�s equations for the interior nodes, Eqs. (2.18)–(2.21), will be used to obtain con-
tinuous forms of the governing equations;

(2) the most general form of the quadratic homogeneous strain energy density will be formulated based
on the kinematics of the directed continuum theory; and

(3) Hamilton�s principle will be used to determine a reduced strain energy density by equating the result-
ing governing equations obtained from steps one and two of this procedure.

Once the reduced strain energy density is found, it will be used to determine the boundary conditions for
the BVP.
3.1. Obtain continuous forms of the governing equations

The first step in the procedure is to obtain continuous versions of Eqs. (2.18)–(2.21). Following a
common methodology (see Suiker et al., 2001), it is assumed that there are sufficiently smooth continu-
ous functions of the position x that approximate the discrete displacement terms. It is then assumed
that the displacement functions change gradually enough over the length 2l such that the discrete dis-
placements at the nodes i � 1 and i + 1 may be written in terms of a Taylor series expansion of the dis-
placement function evaluated at the ith node, where the position is given by xi, in the following
manner:
ui�1 � uðxiÞ � lu0ðxiÞ þ l2u00ðxiÞ=2; ð3:1Þ
ui ¼ uðxiÞ; ð3:2Þ

uiþ1 � uðxiÞ þ lu0ðxiÞ þ l2u00ðxiÞ=2; ð3:3Þ
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where the prime notation indicates the derivative with respect to position x 2 (0,L) and L is the total length
of the film. The form of Eqs. (3.1)–(3.3) is the same for the remaining displacements: v, /, and b. The linear
springs, the small angles assumptions used in Eq. (2.2), and the truncated Taylor series imply that the
resulting model is restricted to the small deformation regime. Models that allow for large deformations will
be presented in future work.

To obtain the desired form of the governing equations, the case with an infinite number of spring pairs
between each inextensible rod will be considered, i.e., let n ! 1 in the Lagrange�s equations, Eqs. (2.18)–
(2.21). It is necessary to scale the spring constants k1 and k2 by n, so that as n! 1 the overall stiffness of
the system does not become infinite. Therefore, the following will be introduced into the Lagrange�s
equations:
k1 ¼ k̂1=n; k2 ¼ k̂2=n. ð3:4Þ

When these terms are used, the limit of the Lagrange�s equations as n ! 1 is determined. For example,
after applying Eqs. (3.4) to Eq. (2.21), one obtains
oU
obi

¼ k̂2
1þ n
2n

� �
hðui�1 � 2ui þ uiþ1Þ �

1þ 3nþ 2n2

6n2

� �
h2ðbiþ1 þ /iþ1 � 2bi � 2/i þ bi�1 þ /i�1Þ

� �

þ k3bi ¼ 0; ð3:5Þ
such that the limit may be applied, i.e.,
lim
n!1

oU
obi

¼ k̂2
1

2
hðui�1 � 2ui þ uiþ1Þ �

1

3
h2ðbiþ1 þ /iþ1 � 2bi � 2/i þ bi�1 þ /i�1Þ

� �
þ k3bi ¼ 0. ð3:6Þ
Applying the Taylor series expansions of the displacement functions for all of the displacements, i.e.,
Eqs. (3.1)–(3.3) and the corresponding relations for v, /, and b, applying the scaled spring constants intro-
duced by Eqs. (3.4), and applying the limit procedure given by Eqs. (3.5) and (3.6) to Eqs. (2.18)–(2.21)
leads to four second order linear homogeneous ordinary differential equations in the displacements
� 1

2
l2 2ðk̂2 þ k4Þu00ðxÞ � hk̂2 /

00ðxÞ þ b00ðxÞ½ �
n o

¼ 0; ð3:7Þ

� l2 ðk̂1 þ 3k5Þv00ðxÞ � 3k5/
0ðxÞ

h i
¼ 0; ð3:8Þ

1

6
l2 3hk̂2u00ðxÞ þ ð3l2k5 � 2h2k̂2Þ/00ðxÞ � 2h2k̂2b

00ðxÞ � 18k5v0ðxÞ þ 18k5/ðxÞ
h i

¼ 0; ð3:9Þ

1

2
hl2k̂2u00ðxÞ �

1

3
h2l2k̂2/

00ðxÞ � 1

3
h2l2k̂2b

00ðxÞ þ k3bðxÞ ¼ 0. ð3:10Þ
Eqs. (3.7)–(3.10) may be rewritten in a form such that only one second order displacement function
appears in each equation, which leads to
hl2ðk̂2 þ 4k4Þu00ðxÞ � 6k3bðxÞ ¼ 0; ð3:11Þ
ðk̂1 þ 3k5Þv00ðxÞ � 3k5/

0ðxÞ ¼ 0; ð3:12Þ
l4k5/

00ðxÞ � 6l2k5v0ðxÞ þ 6l2k5/ðxÞ � 2k3bðxÞ ¼ 0; ð3:13Þ
h2l4k̂2ðk̂2 þ 4k4Þk5b00ðxÞ þ 6h2l2k̂2ðk̂2 þ 4k4Þk5v0ðxÞ � 6h2l2k̂2ðk̂2 þ 4k4Þk5/ðxÞ ð3:14Þ

þ 2k3 h2k̂2ðk̂2 þ 4k4Þ � 6l2ðk̂2 þ k4Þk5
h i

bðxÞ ¼ 0.
The formulation of Eqs. (3.11)–(3.14) completes the first part of the previously outlined procedure to
obtain the desired strain energy density function.
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3.2. Obtain general form of the strain energy density

The second step of the procedure is to write a general form of the strain energy density. This general
form will be based on the chosen kinematics and choice of directed continuum theory. Based on the results
from Eqs. (3.11)–(3.14), it is apparent that there will be four independent displacement functions, u(x), v(x),
/(x), and b(x), which are defined over the domain x 2 (0,L). Since there are four displacement functions for
a one-dimensional domain, a micromorphic continuum theory, which is a particular case of directed con-
tinuum theories, will be used. Fig. 4 illustrates the columnar thin film model as described using a micromor-
phic continuum theory. The classical placement of points, described earlier as the placement of B into E, is
denoted by v in the reference configuration and by x in the deformed configuration. The displacements u(x)
and v(x) will be associated with the evolution of the body in the classical sense, where the displacement vec-
tor u(x) is defined in terms of the scalar displacement functions u(x) and v(x)
1 In
indepe
obviou
rotatio
consid
uðxÞ ¼ uðxÞê1 þ vðxÞê2. ð3:15Þ

The resulting displacement gradient H is defined in the standard way
H ¼ ruðxÞ ¼
u0ðxÞ 0

v0ðxÞ 0

� �
; ð3:16Þ
where the primes denote differentiation with respect to x and $ is the gradient operator. The right column
contains zeros since u and v are only functions of x. Eq. (3.16) is shown as a 2 · 2 matrix only because this
form is more typical in continuum mechanics derivations. For the model presented thus far, there is no
physical meaning to derivatives with respect to any other position, i.e., other than x, since the domain
of the present problem is one-dimensional. Since H is not constant, the deformation associated with H in
Eq. (3.16) is not homogeneous.

The director in Fig. 4 is denoted by v̂ in the reference configuration (where it is a unit vector) and by x̂ in
the deformed configuration. The deformation of v̂, whose components are taken to be the displacements /
(x) and b(x), is associated with the evolution of the microstructure.1 In the microstructure, the deformation
of v̂ is taken to be homogeneous, although it is not homogeneous as a function of x. Therefore, it is possible
to make use of the displacement gradient associated with the evolution of the microstructure, Ĥ, to relate x̂
to v̂, i.e.,
x̂ ¼ ðĤþ IÞv̂; ð3:17Þ

where I is the identity matrix. By making the same small angle assumptions that were given in Eqs. (2.4), it
is possible to write
Ĥ ¼
bðxÞ �/ðxÞ
/ðxÞ bðxÞ

� �
; ð3:18Þ
which is to say that the unit vector v̂ rotates by the angle / (where positive / is a counter-clockwise rota-
tion) and stretches by an amount b.

It is assumed that this material is hyperelastic, i.e., there exists a strain energy density function (per unit
length in this case) called W that may be written as a function of strains. To obtain the general form of W,
the micromorphic theory, the director is capable of rotating and stretching, which is necessary in this case since there are two
ndent displacement functions to take into account. The two displacements /(x) and b(x) associated with the microstructure are
sly rotations. Since we have chosen to be consistent with the classical formulations of Mindlin and Eringen, in this work the
n b(x) will be viewed as a stretch of a unit vector, thus leading to a micromorphic theory. Identical results could be obtained by
ering the displacements as a pair of rotations, in the sense of a micropolar theory with two rotating directors.



Fig. 4. Deformation of a thin film from Bj (the reference configuration) to B (the deformed configuration) with one-dimensional
domain in the horizontal direction given by x 2 (0,L), with unit vectors ê1 and ê2.
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one must determine what constitutes the strain terms. Now that the displacement gradients have been given
by Eqs. (3.16) and (3.18), the formulation of Mindlin (1964) will be used to obtain the strain terms. Mindlin
defines three different strain tensors:
E ¼ 1

2
ðHþ HTÞ; ¼ HT � Ĥ; K ¼ rĤ. ð3:19Þ
The purpose of Eqs. (3.19) is to identify the forms of the displacement functions that appear in the strain
terms. By applying Eqs. (3.16) and (3.18) to Eqs. (3.19), it is apparent that there are six displacement func-
tion terms that appear in the strain tensors: u 0(x), v 0(x), /(x), / 0(x), b(x), and b 0(x). Based on Eqs. (3.19),
u 0(x) and v 0(x) appear in E; u 0(x), v 0(x), /(x), and b(x) appear in ; and / 0(x) and b 0(x) appear in K. The
most general quadratic homogeneous function of these six terms, and the general form of the strain energy
density, is
W ¼ c1u0ðxÞ2 þ c2v0ðxÞ2 þ c3/ðxÞ2 þ c4/
0ðxÞ2 þ c5bðxÞ2 þ c6b

0ðxÞ2 þ c7u0ðxÞv0ðxÞ þ c8u0ðxÞ/ðxÞ
þ c9u0ðxÞ/0ðxÞ þ c10u0ðxÞbðxÞ þ c11u0ðxÞb0ðxÞ þ c12v0ðxÞ/ðxÞ þ c13v0ðxÞ/0ðxÞ þ c14v0ðxÞbðxÞ
þ c15v0ðxÞb0ðxÞ þ c16/ðxÞ/0ðxÞ þ c17/ðxÞbðxÞ þ c18/ðxÞb0ðxÞ þ c19/

0ðxÞbðxÞ
þ c20/

0ðxÞb0ðxÞ þ c21bðxÞb0ðxÞ; ð3:20Þ
where the constants c1,c2, . . . ,c21 are to be determined.

3.3. Obtain the reduced form of the strain energy density

To obtain the specific W based on the discrete model of Section 2, a general form of governing equations
will be obtained via Hamilton�s principle from W in Eq. (3.20). The general governing equations will be
equated with those given by Eqs. (3.7)–(3.10) to solve for the constants c1,c2, . . . ,c21 and thereby yield
the reduced strain energy density function for the columnar thin film model. The total energy is given
by the integral of the strain energy, i.e.,
Ut ¼
Z L

0

W ðu0ðxÞ; v0ðxÞ;/ðxÞ;/0ðxÞ; bðxÞ; b0ðxÞÞdx. ð3:21Þ
To minimize the definite integral in Eq. (3.21), it is necessary to consider the variation of U with respect to
each of the four displacement fields (Lanczos, 1986) as
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dUt ¼ duU t þ dvUt þ d/Ut þ dbUt ¼ 0. ð3:22Þ
It is according to Hamilton�s principle that Eq. (3.22) is set to zero. After integrating by parts, one obtains
the following for the four variations:
duU ¼
Z L

0

� o

ox
oW
ou0

� �
dudxþ oW

ou0
duðxÞ

����
L

0

; ð3:23Þ

dvU ¼
Z L

0

� o

ox
oW
ov0

� �
dvdxþ oW

ov0
dvðxÞ

����
L

0

; ð3:24Þ

d/U ¼
Z L

0

oW
o/

� o

ox
oW
o/0

� �
d/dxþ oW

o/0 d/ðxÞ
����
L

0

; ð3:25Þ

dbU ¼
Z L

0

oW
ob

� o

ox
oW
ob0

� �
dbdxþ oW

ob0 dbðxÞ
����
L

0

. ð3:26Þ
Each of the integrands in Eqs. (3.23)–(3.26) must equal zero for arbitrary variations du, dv, d/, and db.
Therefore, each integrand is part of a single differential equation. By applying the general form of W from
Eq. (3.20) to Eqs. (3.23)–(3.26), one obtains four general governing equations. By equating these resulting
general governing equations with Eqs. (3.7)–(3.10), it is possible to obtain a reduced form of W; see Appen-
dix A for details on this procedure. The strain energy density obtained by the variational approach is given
by
W ¼ 1

2
l2 ðk̂2 þ k4Þu0ðxÞ2 þ ðk̂1 þ 3k5Þv0ðxÞ2 þ 3k5/ðxÞ2 þ

1

6
ð2h2k̂2 � 3l2k5Þ/0ðxÞ2 þ k3l

�2bðxÞ2
�

þ 1

3
h2k̂2b

0ðxÞ2 � hk̂2u0ðxÞ/0ðxÞ � hk̂2u0ðxÞb0ðxÞ � 6k5v0ðxÞ/ðxÞ þ
2

3
h2k̂2/

0ðxÞb0ðxÞ
�
. ð3:27Þ
The boundary conditions may either be given by specifying the displacements at the boundary (the essen-
tial boundary conditions) or by using the boundary terms of Eqs. (3.23)–(3.26) (the natural boundary con-
ditions). As an example, u(0) may be specified (in this case du(0) = 0). If u(0) is not specified, it will be
assumed that no force is exerted on the boundary. Since the boundary term from Eq. (3.23) must equal
zero, it means that oW/ou 0jx=0 = 0. When natural boundary conditions are required, the derivatives ob-
tained from the boundary terms of Eqs. (3.23)–(3.26) will be used. These derivatives are given by
oW
ou0

¼ 1

2
l2 2ðk̂2 þ k4Þu0 � hk̂2ð/0 þ b0Þ
h i

; ð3:28Þ

oW
ov0

¼l2 ðk̂1 þ 3k5Þv0 � 3k5/
h i

; ð3:29Þ

oW
o/0 ¼

1

6
l2 �3hk̂2u0 þ ð2h2k̂2 � 3k5l

2Þ/0 þ 2h2k̂2b
0

h i
; ð3:30Þ

oW
ob0 ¼

1

6
hk̂2l

2 �3u0 þ 2hðb0 þ /0Þ½ �. ð3:31Þ
Therefore, the boundary value problem consists of the four second order ordinary differential equations
given by Eqs. (3.11)–(3.14) and a combination of boundary conditions either given by Eqs. (3.28)–(3.31)
or given by specifying the displacement at the boundary. Additional details utilizing the higher-order strain
terms as given in Eqs. (3.19), the strain energyW, and the stress terms that are work-conjugates of the strain
terms are presented in Appendix B.
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4. Solving the system of governing equations

Before obtaining an analytical solution to the BVP as defined in Section 3, the BVP will be non-dimen-
sionalized. The length term that all other length terms will be scaled by is l (see Fig. 1), which leads to these
substitutions:
n � x=l; ~u � uðnÞ=l; ~v � vðnÞ=l; ~/ � /ðnÞ; ~b � bðnÞ. ð4:1Þ

After applying Eqs. (4.1) to Eqs. (3.11)–(3.14), the governing equations may be completely non-dimension-
alized by dividing each one through by a non-zero constant. In particular, Eq. (3.11) is divided through by
hlðk̂2 þ 4k4Þ, Eq. (3.12) is divided through by k̂1 þ 3k5, Eq. (3.13) is divided through by l2k5, and Eq. (3.14)
is divided through by h2l2k̂2ðk̂2 þ 4k4Þk5. When these steps are implemented, Eqs. (3.11)–(3.14) may be writ-
ten in the non-dimensional form
0 ¼~u00ðnÞ � j1
~bðnÞ; ð4:2Þ

0 ¼~v00ðnÞ � j2
~/
0ðnÞ; ð4:3Þ

0 ¼~/
00ðnÞ � 6~v0ðnÞ þ 6~/ðnÞ � j3

~bðnÞ; ð4:4Þ
0 ¼~b

00ðnÞ þ 6~v0ðnÞ � 6~/ðnÞ þ ðj3 � j4Þ~bðnÞ; ð4:5Þ
where
j1 ¼
6k3

hðk̂2 þ 4k4Þl
; ð4:6Þ

j2 ¼
3k5

k̂1 þ 3k5
; ð4:7Þ

j3 ¼
2k3
k5l

2
; ð4:8Þ

j4 ¼
12k3ðk̂2 þ k4Þ
h2k̂2ðk̂2 þ 4k4Þ

. ð4:9Þ
It is worth noting that j1, j2, j3, and j4 are all non-dimensional and that we have gone from five spring
constants to four non-dimensional material constants. Before applying a similar technique to the natural
boundary conditions, Eqs. (3.28)–(3.31), two additional non-dimensional terms must be introduced:
K � L=l; g � h=l; ð4:10Þ

where h is the discrete column length as shown in Fig. 1 and L is the total length. For this work, if the
boundary displacements are not specified, it will be assumed that there are no loads or moments applied
at the boundaries. Therefore, Eqs. (3.28)–(3.31) are set equal to zero and non-dimensionalized to yield
the following four boundary conditions:
0 ¼ j4~u
0 � j1

~/
0 þ ~b

0� 	���
n¼0;K

; ð4:11Þ

0 ¼ ~v0 � j2
~/jn¼0;K; ð4:12Þ

0 ¼ j3 �3~u0 þ 2g ~/
0 þ ~b

0� 	h i
� 2gj4

~/
0���
n¼0;K

; ð4:13Þ

0 ¼ �3~u0 þ 2g ~/
0 þ ~b

0� 	���
n¼0;K

. ð4:14Þ
Of course, if the non-dimensionalized displacements are given instead, then the specified boundary dis-
placements serve as the boundary conditions.
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The continuous governing equations, Eqs. (4.2)–(4.5), are recast in first order form and solved analyti-
cally by calculating the Jordan canonical form (Coddington and Carlson, 1997). Four of the eight resulting
eigenvalues are 0 and the remaining four eigenvalues are given by
Fig. 5.
of �K/2
k ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6j2 � j3 þ j4 � 6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6j2 � j3 þ j4 � 6Þ2 þ 24ð1� j2Þj4

qr
. ð4:15Þ
From a physical perspective, all of the constants k̂1, k̂2, k3, k4, k5, h, and l must be greater than zero. Based
on Eqs. (4.6)–(4.9) it follows that j1, j2, j3, j4 > 0. In addition, based on Eq. (4.7), one may observe that
0 < j2 < 1, which means that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð6j2 � j3 þ j4 � 6Þ2 þ 24ð1� j2Þj4

q
>j 6j2 � j3 þ j4 � 6 j; ð4:16Þ
so that Eq. (4.15) will always yield two real and two imaginary eigenvalues.
5. Some examples and results

The purpose of this section is to demonstrate some of the possible uses of the model presented in the
preceding sections. In all of the cases to be analyzed, the film is subjected to the same type of loading, which
is defined in Fig. 5. The horizontal displacements at each end (n = 0 and n = K) might be due to applied
loads at each end, as a result of manufacturing induced stress in one of the layers of the film, or as a result
of a mismatch in material properties, e.g., mismatch in coefficients of thermal expansion between two layers
of a multi-layer film. Each end of the film is pinned so as to prevent vertical deflection. The remaining dis-
placement functions, ~/ and ~b, are not constrained in any way. Therefore, the boundary conditions will con-
sist of four essential boundary conditions
~uð0Þ ¼ �K
2
; ~uðKÞ ¼ � �K

2
; ~vð0Þ ¼ 0; ~vðKÞ ¼ 0; ð5:1Þ
and four natural boundary conditions
~/
0ð0Þ ¼ 0; ~/

0ðKÞ ¼ 0; ð5:2Þ

3~u0ð0Þ � 2g~b
0ð0Þ ¼ 0; 3~u0ðKÞ � 2g~b

0ðKÞ ¼ 0; ð5:3Þ

where Eqs. (5.2) and (5.3) follow from Eqs. (4.13) and (4.14). (Eqs. (4.11) and (4.12) are not used here, since
the actual displacements are given instead by Eqs. (5.1).) The non-dimensionalized constant � is a loading
parameter that specifies the horizontal displacement at the boundary. The various cases being studied are
described by different values of j1, j2, j3, j4, K, and g. These constants are shown in Table 1. The numerical
values were chosen to highlight different behavior observed from the model. They are also consistent with
The system to be analyzed consists of a film of non-dimensionalized length K subjected to horizontal displacements at each end
and pinned to prevent vertical displacement. If � > 0, the film is compressed.



Table 1
The geometric and material constants that describe the directed continuum based model for the n cases considered in this section

Constant Case 1 Case 2 Case 3 Case 4

j1 0.2 4 5.9 0.03
j2 0.999 0.916 0.098 0.098
j3 2 2.76 500 2.58
j4 0.2 10.5 11.2 0.0579
K 50 50 50 50
g 4 1.5 2 2
� 0.02 0.02 0.02 0.02

Table 2
The four non-zero eigenvalues for each of the four cases

Case Eigenvalues

1 k = ±1.344i, ±0.02577
2 k = ±0.8182i, ±2.812
3 k = ±22.23i, ±0.3502
4 k = ±2.824i, ±0.1982

Note that for each case there are two imaginary and two real valued non-zero eigenvalues.
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the requirements discussed at the end of Section 4 regarding Eqs. (4.6)–(4.9). For completeness, the non-
zero valued eigenvalues for all four cases are presented in Table 2.

5.1. Case 1—Euler–Bernoulli beam-like system

Case 1 is an example of how the directed continuum (DC) model approaches the classic Euler–Bernoulli
(E–B) beam model. The vertical spring constant k̂1 is small compared with the other constants and h is lar-
ger than l. According to Eq. (4.7), it follows that j2 is close to 1, although it can never equal 1. In addition,
according to Eqs. (4.6) and (4.9), both j1 and j4 are relatively small. The plots of the displacement func-
tions for Case 1 are shown in Fig. 6. The similarity with an E–B beam is demonstrated by considering the
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Fig. 6. Displacement fields for Case 1, the system most resembling the deformation of an Euler–Bernoulli beam.
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Fig. 7. Displacement fields ~/ðnÞ and ~v0ðnÞ for Case 1, the Euler–Bernoulli beam-like system. Note the similarity between these
functions.
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vertical displacement, ~vðnÞ. For an E–B beam with constant curvature, the vertical displacement function is
quadratic. If one were to plot the quadratic best fit of ~vðnÞ on Fig. 6, the two curves would be indistinguish-
able. The displacement ~/ðnÞ is also close to ~v0ðnÞ for this case, as shown in Fig. 7. (Recall that for an E–B
beam, the derivative of the displacement is identified with the rotation of the cross-section of the beam.) In
addition, the longitudinal displacement is linear. A linear displacement is the expected behavior of a rod or
linear spring subjected to axial end loading conditions, where the governing equation would simply be given
by ~u00ðnÞ ¼ 0, where ~uðnÞ is the longitudinal displacement.

5.2. Case 2—oscillatory vertical deflection

The previous case considered a system whose behavior was similar to that expected for a classical E–B
beam subjected to equal and opposite bending moments at both ends. In this case, we are considering a
system with very different behavior. In fact, this case may be considered in light of the experimentally ob-
served phenomenon of thin film buckling (Volynskii et al., 2000, 2004,). The results for this case, Case 2, are
shown in Fig. 8. Clearly, the function ~vðnÞ does not behave as an E–B beam (although, as in Case 1, ~bðnÞ is
smaller than ~/ðnÞ). Both the wavelength and the amplitude of ~vðnÞ change as the spring constants change.
One of the areas to be investigated is the relationship between the wavelength of ~vðnÞ and the material prop-
erties, which is a common issue of the buckling of thin films and coatings. It is worth noting that the wave-
length for the DC model is independent of the loading parameter, given by �, which is consistent with what
is presented in the analysis of buckling using classical theories (Stafford et al., 2004).
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Fig. 8. Displacement fields for Case 2. In this case the material constants were chosen to produce an oscillatory vertical deflection, ~vðnÞ.
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5.3. Case 3—flattened vertical deflection

Case 3, the results of which are shown in Fig. 9, produces a smooth, flattened deformation ~vðnÞ that does
not resemble the E–B beam behavior from Case 1. The fact that this system is quite different from a classical
E–B beam is shown by Fig. 10. First, a quadratic fit is included along with the plot of ~vðnÞ. It is obvious that
the DC model is not adequately described with an E–B beam subjected to bending load conditions. Second,
~v0ðnÞ is plotted with ~/ðnÞ, showing that this system is unlike that of Case 1 and shown in Fig. 7. Also, be-
cause of the relative flexibility of the substrate in this system, rotation of the substrate matches very closely
with the rotation of the columns, i.e., ~bðnÞ is much smaller than ~/ðnÞ. From the discrete model, when b = 0
the torsional spring does not rotate.

One way to consider the results presented thus far is by considering a possible use of this DC theory in
the study of micro- and nano-scale thin films. Often, a stress is determined experimentally for a thin film by
obtaining a single-valued measure of curvature. This is typically accomplished by focusing a laser along the
surface of a thin film and measuring the change in the angle of deflection of the laser onto a detector device
(Raghavan and Redwing, 2004). The relationship between a single value of curvature and a stress is usually
expressed via the Stoney equation (Ohring, 1992), which is given as
Fig. 10
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Fig. 9. The displacement fields for Case 3. The constants were chosen to produce a flattened vertical deflection, ~vðnÞ.
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rf ¼
1

6R
Esd

2
s

ð1� msÞd f

; ð5:4Þ
where Es is the elastic modulus of the substrate, ds is the thickness of the substrate, ms is the Poisson�s ratio
of the substrate, df is the thickness of the film, and R is the radius of curvature. The E–B beam theory gives
a single value of curvature for a beam governed by the relation v000(x) = 0, where the displacement v is given
as a function of the position x along the length of the beam. If a thin film is modeled using such a theory,
there will always be a constant R to be used with Eq. (5.4).

On the other hand, if the columnar structure of a thin film is modeled using a DC theory, it may be dif-
ficult to talk about a single curvature measurement for the entire film. Although the system as described by
Case 1 may adequately be modeled using the Stoney equation, the results as shown in Fig. 10 for Case 3
demonstrate that any single value of R measured in an experiment would not represent the actual deflection
of the thin film (compare the plot of ~vðnÞ with the quadratic fit). Hence an estimate of the stress as given by
Eq. (5.4) may not be representative of the actual physical system. Experimental observations of films with
varying curvature are discussed in (Rosakis et al., 1998).

5.4. Case 4—reducing the torsional spring from case 3

The purpose of Case 4 is to consider the role of the torsional spring from the discrete model, described by
k3, on the overall behavior of the continuum model. This particular case, which may not be physically
meaningful when considering actual columnar thin films, is included only to study the effect of the spring
described by k3. The presence of the torsional spring is critical in coupling the columnar structure to the
substrate. The constants for this case were obtained by using the constants from Case 3 and only changing
the value of k3. Note that as k3 becomes small, j3 also becomes small; see Eq. (4.8) and compare the value
of j3 for Cases 3 and 4 in Table 1. The ability to exert a moment directly onto the substrate by the columnar
structure is minimized since the torsional spring constant is minimized. The results for such a case are
shown in Fig. 11. An immediate result of minimizing k3, which is unlike the previous cases, is that ~bðnÞ
is no longer smaller than ~/ðnÞ (in fact, it is larger near the ends). Large scale oscillatory behavior is also
introduced into ~vðnÞ in a manner similar to that shown in Case 2. Finally, note that the average deformation
of ~vðnÞ is of the same order of magnitude of the deformation given in Case 3 (see Fig. 9).
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6. Summary

The results, shown in Figs. 6–11 for the four cases, demonstrate the variety of physical responses possible
due to a simple longitudinal deformation of a film as described using a directed continuum theory. It is
suggested that the heterogeneous nature of the materials under consideration necessitates the use of
higher-order theories, such as the micromorphic directed continuum theory presented thus far. Implement-
ing such a theory has led to the formulation of a relatively simple system of linear ordinary differential
equations. By moving from the discrete realm to the continuum realm, it is possible to better understand
the problem by analyzing the strain energy density function and the governing differential equations.

It is hoped that this research will lead to more detailed models incorporating non-linear material behav-
ior as well as kinetics. It will also be necessary to analyze actual physical systems, which requires the incor-
poration of actual material constants, geometric information, and a better understanding of the loading
conditions into the model. A model thus formulated will be used in finite element calculations to simulate
and predict the mechanical properties of a variety of micro- and nano-scale systems.
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Appendix A. Determining the strain energy density

The purpose of this section is to obtain the strain energy density function W that was given in Eq. (3.27)
from the general form given in Eq. (3.20). This will be done by applying Eq. (3.20) to Eqs. (3.23)–(3.26) to
obtain a general form of the governing equations containing the terms c1, c2, . . . ,c21. This general form of
the governing equations will be equated with Eqs. (3.7)–(3.10) to obtain the constants c1, c2, . . . ,c21.

Begin by applying Eq. (3.20) to Eq. (3.23). According to Hamilton�s principle
� o

ox
oW
ou0

¼ � 2c1u00ðxÞ þ c7v00ðxÞ þ c8/
0ðxÞ þ c9/

00ðxÞ þ c10b
0ðxÞ þ c11b

00ðxÞ½ � ¼ 0. ðA:1Þ
Eq. (A.1) will be compared with Eq. (3.7), rewritten here,
� 1

2
l2 2ðk̂2 þ k4Þu00ðxÞ � hk̂2 /

00ðxÞ þ b00ðxÞ½ �
n o

¼ 0; ðA:2Þ
and used to solve for the constants c1, c7, c8, c10, and c11
c1 ¼
1

2
l2ðk̂2 þ k4Þ; c9 ¼ c11 ¼ � 1

2
hl2k̂2; c7 ¼ c8 ¼ c10 ¼ 0. ðA:3Þ
In a similar manner, Eqs. (3.20) and (A.3) are applied to Eq. (3.24) to yield
� o

ox
oW
ov0

¼ � 2c2v00ðxÞ þ c12/
0ðxÞ þ c13/

00ðxÞ þ c14b
0ðxÞ þ c15b

00ðxÞ½ � ¼ 0. ðA:4Þ
Eq. (3.8) is written here
�l2 ðk̂1 þ 3k5Þv00ðxÞ � 3k5/
0ðxÞ

h i
¼ 0; ðA:5Þ
to be compared with Eq. (A.4) to obtain solutions for c2, c12, c13, c14, and c15
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c2 ¼
1

2
l2ðk̂1 þ 3k5Þ; c12 ¼ �3l2k5; c13 ¼ c14 ¼ c15 ¼ 0. ðA:6Þ
Eqs. (3.20), (A.3), and (A.6) are applied to Eq. (3.25), which leads to
oW
o/

� o

ox
oW
o/0 ¼ 2c3/ðxÞ � 2c4/

00ðxÞ þ 1

2
hl2k̂2u00ðxÞ � 3l2k5v0ðxÞ þ c17bðxÞ þ ðc18 � c19Þb0ðxÞ

� c20b
00ðxÞ ¼ 0. ðA:7Þ
Eq. (A.7) may be compared with Eq. (3.9), written here as
1

6
l2 3hk̂2u00ðxÞ þ ð3l2k5 � 2h2k̂2Þ/00ðxÞ � 2h2k̂2b

00ðxÞ � 18k5v0ðxÞ þ 18k5/ðxÞ
h i

¼ 0. ðA:8Þ
After comparing these equations, one finds that
c3 ¼
3

2
l2k5; c4 ¼

1

12
l2ð2h2k̂2 � 3l2k5Þ; c17 ¼ 0; ðA:9Þ

c19 ¼ c18; c20 ¼
1

3
h2l2k̂2. ðA:10Þ
Finally, Eqs. (3.20), (A.3), (A.6), (A.9) and (A.10) may be applied to Eq. (3.26) to obtain
oW
ob

� o

ox
oW
ob0 ¼ 2c5bðxÞ � 2c6b

00ðxÞ þ 1

2
hl2k̂2u00ðxÞ �

1

3
h2l2k̂2/

00ðxÞ ¼ 0. ðA:11Þ
Eq. (3.10) is rewritten here
1

2
hl2k̂2u00ðxÞ �

1

3
h2l2k̂2/

00ðxÞ � 1

3
h2l2k̂2b

00ðxÞ þ k3bðxÞ ¼ 0; ðA:12Þ
and is compared with Eq. (A.11) to show that
c5 ¼
1

2
k3; c6 ¼

1

6
h2l2k̂2. ðA:13Þ
From Eqs. (A.3), (A.6), (A.9), (A.10) and (A.13), it is apparent that the constants c16, c18, and c21 are
arbitrary (keeping in mind that, according to Eq. (A.10), c19 = c18). This means they may have any value
and the governing equations that result will be identical to those given by Eqs. (3.7)–(3.10). These constants
will appear in the natural boundary conditions, see Eqs. (3.25) and (3.26).

One way of determining the values of c16, c18, and c21, and the method used in this work, is to reconsider
the discrete form of the total energy given by Eq. (2.8). In particular, consider the energy of the interior
nodes given by the summed terms from Eq. (2.8). In a manner similar to that used in Section 3, it is possible
to generate a continuous form of the total energy. Since the highest order terms appearing in the energy
density function are first order, the following expansion, see Eqs. (3.1)–(3.3), will be used
ui�1 � uðxiÞ � lu0ðxiÞ; ui ¼ uðxiÞ; uiþ1 � uðxiÞ þ lu0ðxiÞ; ðA:14Þ

where the form of Eqs. (A.14) is identical for the displacements v, /, and b. Since Eq. (2.8) gives the discrete
form of the total energy of the interior nodes, the continuous form of Eq. (2.8) will not be used directly, i.e.,
W is the strain energy density function and is not equivalent to Eq. (2.8). Rather, the continuous form of
Eq. (2.8), obtained via Eqs. (A.14) and the equivalent expansions for the other displacements, will consist of
some of the terms appearing in the general form of W given by Eq. (3.20). The presence or absence of qua-
dratic strain terms will give us insight into our choice for the constants c16, c18, and c21.

The summation from Eq. (2.8) consists of terms defined by Eqs. (2.1), (2.2), and (2.5),(2.6),(2.7). After
applying the Taylor series expansion of the displacement function v evaluated at the ith node up to the
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first order to Eq. (2.1), the resulting continuous equation includes the term v 0(x)2. After applying the nec-
essary expansions to Eq. (2.2), the quadratic strain terms consist of the following: u 0(x)2, b 0(x)2, / 0(x)2,
u 0(x)/ 0(x), u 0(x)b 0(x), and / 0(x)b 0(x). In a similar manner, the continuous form of Eq. (2.5) leads to
the quadratic strain term b(x)2 and the continuous form of Eq. (2.6) leads to u 0(x)2. Finally, after expand-
ing the discrete displacements in Eq. (2.7), four quadratic strain terms result: v 0(x)2, /(x)2, / 0(x)2, and
v 0(x)/(x).

Note that the products /(x)/ 0(x), /(x)b 0(x), / 0(x)b(x), and b(x)b 0(x) do not appear in the list of qua-
dratic strain terms resulting from Eq. (2.8). Therefore, based on the energy from the discrete system, these
terms will not be included in the final form of the strain energy function, i.e.,
c16 ¼ c18 ¼ c19 ¼ c21 ¼ 0. ðA:15Þ

In addition, consider the constants set to zero in Eqs. (A.3), (A.6), and (A.9): c7, c8, c10, c13, c14, c15, and

c17. The strain terms multiplied by these constants in Eq. (3.20) do not appear in the list of strain terms that
result from Eq. (2.8).

After applying Eqs. (A.3), (A.6), (A.9) and (A.15) to Eq. (3.20), one obtains
W ¼ 1

2
l2 ðk̂2 þ k4Þu0ðxÞ2 þ ðk̂1 þ 3k5Þv0ðxÞ2 þ 3k5/ðxÞ2 þ

1

6
ð2h2k̂2 � 3l2k5Þ/0ðxÞ2 þ k3l

�2bðxÞ2
�

þ 1

3
h2k̂2b

0ðxÞ2 � hk̂2u0ðxÞ/0ðxÞ � hk̂2u0ðxÞb0ðxÞ � 6k5v0ðxÞ/ðxÞ þ
2

3
h2k̂2/

0ðxÞb0ðxÞ
�
. ðA:16Þ
Eq. (A.16) is identical to Eq. (3.27).
Appendix B. Higher-order strain and stress terms

The purpose of this appendix is to develop the higher-order stress terms associated with micromorphic
continuum theory. Beginning with Eqs. (3.19) and utilizing the strain energy density given by Eq. (3.27), the
three work-conjugate stress terms will be defined. The balance of momenta relations of Mindlin (1964) will
then be used to demonstrate the equivalence of the content of this appendix with Eqs. (3.7)–(3.10), (3.29)–
(3.31), i.e., the governing equations and the boundary conditions.

From the definition of the strain tensors given by Eqs. (3.19) and the definitions of H and Ĥ given by Eqs.
(3.16) and (3.18), it follows that
E ¼
u0ðxÞ v0ðxÞ=2
v0ðxÞ=2 0

� �
¼

E11 E12

E21 E22

� �
; ðB:1Þ

¼
u0ðxÞ � bðxÞ v0ðxÞ þ /ðxÞ

�/ðxÞ �bðxÞ

� �
¼

C11 C12

C21 C22

� �
; ðB:2Þ

fKg1 ¼
b0ðxÞ �/0ðxÞ
/0ðxÞ b0ðxÞ

� �
¼

K111 K112

K121 K122

� �
; ðB:3Þ
where the subscript attached to the third order tensor K signifies that only the derivatives with respect to x

will be considered since all other derivatives must equal zero. The homogeneous quadratic potential energy
density function that is identical to Eq. (3.27) may be written as
W ¼ 1

2
eTCeþ 1

2
cTBcþ 1

2
kTAkþ cTDkþ kTFeþ cTGe; ðB:4Þ
where the vectors e, c, and k are defined as
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e ¼

E11

E22

E12

E21

8>>><
>>>:

9>>>=
>>>;
; c ¼

C11

C22

C12

C21

8>>><
>>>:

9>>>=
>>>;
; k ¼

K111

K122

K112

K121

8>>><
>>>:

9>>>=
>>>;
. ðB:5Þ
These vectors simply contain the terms found in the strain tensors in Eqs. (B.1)–(B.3). The six 4 by 4 matri-
ces from Eq. (B.4) are defined as follows:
C ¼

ðk̂2 þ k4Þl2 0 0 0

0 0 0 0

0 0 ðk̂1 þ 12k5Þl2 ðk̂1 þ 12k5Þl2

0 0 ðk̂1 þ 12k5Þl2 ðk̂1 þ 12k5Þl2

2
6664

3
7775; ðB:6Þ

B ¼

0 k3 0 0

k3 �k3 0 0

0 0 3k5l
2 0

0 0 0 0

2
6664

3
7775; ðB:7Þ

A ¼

h2k̂2l
2=3 0 �h2k̂2l

2=3 0

0 0 0 0

�h2k̂2l
2=3 0 ðh2k̂2=3� k5l

2=2Þl2 0

0 0 0 0

2
6664

3
7775; ðB:8Þ

F ¼

�hk̂2l
2=2 0 0 0

0 0 0 0

hk̂2l
2=2 0 0 0

0 0 0 0

2
6664

3
7775; ðB:9Þ

G ¼

0 0 0 0

�k3 0 0 0

0 0 �6k5l
2 �6k5l

2

0 0 0 0

2
6664

3
7775; ðB:10Þ
and D is the zero matrix. Due to the presence of the matrix F, this continuum model is anisotropic. After
substituting Eqs. (B.1)–(B.3) and (B.5)–(B.10) with D = 0 into Eq. (B.4), one obtains a strain energy density
identical to that given by Eq. (3.27).

There are three stress tensors that are the work-conjugates of the strain tensors, referred to by Mindlin as
the Cauchy stress, the relative stress, and the double stress, respectively:
T � oW
oE

¼ TT; R ¼ oW
o

; M ¼ oW
oK

; ðB:11Þ
where the symmetry of the Cauchy stress follows from the symmetry of E. Based on Eq. (B.4), the compo-
nents of the stress tensors are
fTg11 ¼ k3bðxÞ þ ðk̂2 þ k4Þl2u0ðxÞ �
1

2
hk̂2l

2b0ðxÞ � 1

2
hk̂2l

2/0ðxÞ; ðB:12Þ

fTg12 ¼ fTg21 ¼ �6k5l
2/ðxÞ þ ðk̂1 þ 6k5Þl2v0ðxÞ; ðB:13Þ

fTg22 ¼ 0; ðB:14Þ
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fRg11 ¼ �k3bðxÞ; ðB:15Þ
fRg12 ¼ 3k5l

2/ðxÞ � 3k5l
2v0ðxÞ; ðB:16Þ

fRg21 ¼ fRg22 ¼ 0; ðB:17Þ

fMg111 ¼ � 1

2
hk̂2l

2u0ðxÞ þ 1

3
h2k̂2l

2b0ðxÞ þ 1

3
h2k̂2l

2/0ðxÞ; ðB:18Þ

fMg112 ¼
1

2
hk̂2l

2u0ðxÞ � 1

3
h2k̂2l

2b0ðxÞ � 1

3
h2k̂2l

2/0ðxÞ þ 1

2
k5l

4/0ðxÞ; ðB:19Þ

fMg121 ¼ fMg122 ¼ 0. ðB:20Þ
For the static case under consideration, the balance of momenta equations that result from the variation of
the strain energy density given by Mindlin (1964) are rewritten as
DivðTþ RÞ þ f ¼ 0; DivMþ Rþ U ¼ 0; ðB:21Þ
where f is the body force per unit volume and U is the double force per unit volume. In the present analysis,
there are neither body forces nor double forces present. The boundary conditions are given using the trac-
tion t and double force per unit area H as
t ¼ ðTþ RÞn; H ¼ Mn; ðB:22Þ

where n is the unit vector normal to the surface. Applying Eqs. (B.12)–(B.20) to Eqs. (B.21) yields the four
governing equations, given by Eqs. (3.7)–(3.10). Applying these same relations to Eqs. (B.22) yields the four
natural boundary conditions as given by Eqs. (3.28)–(3.31) when t = 0 and H = 0.
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Bažant, Z.P., 1971. Micropolar medium as a model for buckling of grid frameworks. In: Lee, L.N., Szewczyk, A.A. (Eds.), 12th

Midwestern Mechanics Conference. Developments in Mechanics, Vol. 6. University of Notre Dame Press, Notre Dame, IN.
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